


SURFACE AREA - Formula Sheet

2D SHAPES Area Formulas	
Square	A = Lw
Rectangle	A = Lw
Circle	$A = \pi r^2$
Triangle	A = 0.5bh

Diameter \div 2 = **Radius** Radius \times 2 = **Diameter**

3D SHAPES Surface Area Formulas	
Cube	$SA=6(area\ of\ one\ square)$ which means the same as: $SA=6LW$
Right Rectangular Prism	$SA = 2(area\ of\ base\ or\ top) + 2(area\ of\ either\ side) + 2(area\ of\ front\ or\ back)$ which means the same as: $SA = 2LW(base) + 2LW(side) + 2LW(front)$
Triangular Prism	$SA = 2(area\ of\ either\ triangle) + (area\ of\ a\ side) + (area\ base)$ which means the same as: $SA = 2(0.5bH)(triangle) + LW(side) + LW(side) + LW(base)$
Right Cylinder	$SA=(area\ of\ the\ rectangle)+2(area\ of\ either\ circle)$ which means the same as: $SA=(\pi d)(h)+2(\pi r^2)$ where $\pi d=circumference$ USE 3.14 for π

VOLUME – Formula Sheet

3D SHAPES VOLUME FORMULAS	
Right Rectangular Prism	$ extit{Volume} = (extit{area of base}) imes extit{height}$ $ extit{V} = extit{LWh}$
Triangular Prism	$Volume=(area\ of\ triangular\ base) imes height$ $V=(0.5bH)h$ where H is the height of the triangle, and h is the height of the prism
Right Cylinder	Volume = (area of circlular base) $ imes$ height $oldsymbol{V} = oldsymbol{\pi} r^2 oldsymbol{h}$
Cube	$ extit{Volume} = (area\ of\ base) imes height$ $ extit{V} = extit{LWh}$