The Pythagorean Theorem

We can find missing side lengths on triangles with the Pythagorean Theorem

- always longest side
- interchangeable
- must make foight Angle (side a joined to side b to create

- always across from the right angle
a
Solve for the missing sides:
a) $\frac{b}{8}$

$$
\begin{aligned}
& a^{2}+b^{2}=c^{2} \\
& 7^{2}+8^{2} \\
& 49+64
\end{aligned}
$$

$$
49+64 \text { _r ar...proit }
$$

\bigcirc

$$
\begin{aligned}
& 49+64 \\
& \sqrt{113}=\sqrt{c^{2}} \text { find Square Root } \\
& 10.6=C
\end{aligned}
$$

b)

$$
\begin{gathered}
b \\
12
\end{gathered}
$$

$$
\begin{gathered}
a^{2}+b^{2}=c^{2} \\
5^{2}+12^{2}=c^{2} \\
25+144 \\
\sqrt{169}=\sqrt{c^{2}} \\
13=c
\end{gathered}
$$

