Perfect Squares Day 1

December 1, 2016 1:29 PM

Perfect Squares Page 1

Math 8
Name: \qquad

Perfect Squares

A perfect square is a number made by "squaring" a whole number. Squaring means to multiply by itself. The symbol for squaring in a tiny number 2 written on the top right corner.

$$
4^{2}=4 \times 4=16
$$

$$
5^{2}=5 \times 5=25
$$

Etc...

Every number can multiply to make a perfect square, but not every number is a perfect square.
(AREA) (SIDELENGTH)
The number that is multiplied to create the perfect square is called a square root. A

$$
\begin{aligned}
\sqrt{9} & =3 \\
\sqrt{16} & =4 \\
\sqrt{81} & =9
\end{aligned}
$$

TASK - Complete Perfect Squares Table

perfect

TASK - Complete Square Roots Table

(A) To go From the perfect square (areal

To the square root (side length) you NEVER EVER EVER DIVDIDE by $4!!!$

We can also determine whether a number is a perfect square by using prime factorization.

To write a prime factorization statement we need to break down the number into it's prime factors. A prime factor is a factor of the original number that is also a prime number (not divisible by anything but 1 and itself). We can do this by creating a factor tree.
Examples of prime numbers: $2,3,5,7,11,13,17,19,23,29, \ldots, 1$ Memorize
The number " 1 " is NOT a prime number.

The rectangles mean factor again! The circles mean stop \rightarrow prime factor.

Ex. Use a factor tree to determine the prime factorization statement for each number.

If you can organize the prime factors into TWO IDENTICAL GROUPS, then the original number was a perfect square.

4 Are either of the number above $(40 \& 81)$ perfect squares?

$$
\frac{2 \times 2}{40 \text { is NOTPCR SQ. }}
$$

TASK - Complete the Factor Tree WS $4 \square$ Rectangle

$$
9 \square \text { square }
$$

	Squares	
$1^{2}=1 \times 1=1$	$5^{2}=5 \times 5=25$	$9^{2}=9 \times 9=81$
$2^{2}=2 \times 2=4$	$6^{2}=6 \times 6=36$	$10^{2}=10 \times 10=100$
$3^{2}=3 \times 3=9$	$7^{2}=7 \times 7=49$	$11^{2}=11 \times 11=121$
$4^{2}=4 \times 4=16$	$8^{2}=8 \times 8=64$	$12^{2}=12 \times 12=144$
	Square Roots	
$\sqrt{1}= \pm 1$	$\sqrt{25}= \pm 5$	$\sqrt{81}= \pm 9$
$\sqrt{4}= \pm 2$	$\sqrt{36}= \pm 6$	$\sqrt{100}= \pm 10$
$\sqrt{9}= \pm 3$	$\sqrt{49}= \pm 7$	$\sqrt{121}= \pm 11$
$\sqrt{16}= \pm 4$	$\sqrt{64}= \pm 8$	$\sqrt{144}= \pm 12$

Math 8
Name: \qquad

Perfect Squares Table

(Side Length) (AREA)

Number	Exponent Form	Multiplied Form	Perfect Square
1	1^{2}	1×1	
2			
3			
4			
5			
6			
7			
8			
9			
10			
11			
12			
13			
14			
16			
17			
18			
19			
20			

Math 8
Name: \qquad

Square Roots Table

(Area)			
Number Square of Number Square Root Sength	Reason		
1	$\sqrt{1}$	1	$1 \times 1=1$
4	$\sqrt{2}$	2	$2 \times 2=4$
9			
16			
25			
36			
49			
64			
81			
100			
121			
144			
169			
196			
225			
256			
289			
324			
361			
400			

Date :

Find the Prime Factors of the Numbers
1)

2)

3)

Prime Factors

Prime Factors
${ }_{-} x_{-} x_{-} x_{-}=40$

Prime Factors
${ }_{-} x_{-} x_{-} x_{-}=60$

Prime Factors
$x_{-} x_{-} x_{-} x_{-}=32$

F- Math-Aids.Com

Prime Factors
_ $x_{-} x_{-} x_{-}=36$
5)

Prime Factors
${ }_{-} x_{-} x_{-} x_{-} x_{-}=48$

