Name: \qquad
Similar Triangles

Triangles are similar if they have all the SAME ANGLES and the RATIOS of their sides are the same.
Here are some examples:

$$
\frac{L}{S}=\frac{D F}{A C}=\frac{F E}{C B}=\frac{D E}{A B}
$$

We can PROVE triangles are similar if we can show that the RATIOS of their CORRESPONDING SIDES are equivalent.

$$
\begin{aligned}
\frac{L}{S}=\frac{40}{4} & =\frac{60}{6}=\frac{50}{5} \\
10 & =10
\end{aligned} \text { Yes. }
$$

B

$$
\begin{aligned}
\frac{S}{L}=\frac{4}{40} & =\frac{6}{60}=\frac{5}{50} \text { Yes. } \\
0.1 & =0.1=0.1 \mathrm{~V}
\end{aligned}
$$

If we KNOW that two triangles are similar, we can use their RATIOS and set up a PROPORTION to solve
for unknown lengths.

$$
\begin{array}{r}
14 \times 3=\frac{42}{\div 21} \\
x=2 \\
\frac{x}{5}=\frac{6}{12} \\
5 \times 6=30 \div 12=x=2.5
\end{array}
$$

When you have fractions across an equal sign t cross multiply (across = sign and level) then divide (use other \#)

$$
\begin{aligned}
& \frac{y}{13} f \frac{6}{12} \\
& 13 \times 6=78 \div 12
\end{aligned}
$$

Sometimes similar triangles can be inside the same BIG triangle. These can be tricky to spot....

H)

$$
\frac{T}{B} \quad \frac{?}{5}=\frac{24}{8} \quad \begin{gathered}
24 \\
\text { Tree }=15 \mathrm{ft}
\end{gathered}
$$

